|
In thermodynamics the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the thermodynamic operation of removal of impermeable partition(s) between them, followed by a time for establishment of a new thermodynamic state of internal equilibrium in the new unpartitioned closed system. In general, the mixing may be constrained to occur under various prescribed conditions. In the customarily prescribed conditions, the materials are each initially at a common temperature and pressure, and the new system may change its volume, while being maintained at that same constant temperature, pressure, and chemical component masses. The volume available for each material to explore is increased, from that of its initially separate compartment, to the total common final volume. The final volume need not be the sum of the initially separate volumes, so that work can be done on or by the new closed system during the process of mixing, as well as heat being transferred to or from the surroundings, because of the maintenance of constant pressure and temperature. The internal energy of the new closed system is equal to the sum of the internal energies of the initially separate systems. The reference values for the internal energies should be specified in a way that is constrained to make this so, maintaining also that the internal energies are respectively proportional to the masses of the systems.〔Prigogine, I. (1955/1967). ''Introduction to Thermodynamics of Irreversible Processes'', third edition, Interscience Publishers, New York, p. 12.〕 For concision in this article, the term 'ideal material' is used to refer to an ideal gas (mixture) or an ideal solution. In a process of mixing of ideal materials, the final common volume is the sum of the initial separate compartment volumes. There is no heat transfer and no work is done. The entropy of mixing is entirely accounted for by the diffusive expansion of each material into a final volume not initially accessible to it. On the mixing of non-ideal materials, the total final common volume may be different from the sum of the separate initial volumes, and there may occur transfer of work or heat, to or from the surroundings; also there may be a departure of the entropy of mixing from that of the corresponding ideal case. That departure is the main reason for interest in entropy of mixing. These energy and entropy variables and their temperature dependences provide valuable information about the properties of the materials. On a molecular level, the entropy of mixing is of interest because it is a macroscopic variable that provides information about constitutive molecular properties. In ideal materials, intermolecular forces are the same between every pair of molecular kinds, so that a molecule feels no difference between other molecules of its own kind and of those of the other kind. In non-ideal materials, there may be differences of intermolecular forces or specific molecular effects between different species, even though they are chemically non-reacting. The entropy of mixing provides information about constitutive differences of intermolecular forces or specific molecular effects in the materials. The statistical concept of randomness is used for statistical mechanical explanation of the entropy of mixing. Mixing of ideal materials is regarded as random at a molecular level, and, correspondingly, mixing of non-ideal materials may be non-random. ==Mixing of ideal materials at constant temperature and pressure== In ideal materials, intermolecular forces are the same between every pair of molecular kinds, so that a molecule "feels" no difference between itself and its molecular neighbours. This is the reference case for examining corresponding mixings of non-ideal materials. For example, two ideal gases, at the same temperature and pressure, are initially separated by a dividing partition. Upon removal of the dividing partition, they expand into a final common volume (the sum of the two initial volumes), and the entropy of mixing is given by :. where is the gas constant, the total number of moles and the mole fraction of component , which initially occupies volume . After the removal of the partition, the moles of component may explore the combined volume , which causes an entropy increase equal to for each component gas. In this case, the increase in entropy is due entirely to the irreversible processes of expansion of the two gases, and involves no heat or work flow between the system and its surroundings. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Entropy of mixing」の詳細全文を読む スポンサード リンク
|